Pertussis toxin specifically inhibits growth cone guidance by a mechanism independent of direct G protein inactivation

نویسندگان

  • Rachel M. Kindt
  • Arthur D. Lander
چکیده

An assay employing patterned laminin substrata was used to screen for compounds that disrupt neurite guidance. One molecule, pertussis toxin, caused neurites to wander from patterns that normally guided them, yet had no significant effect on rates of neurite outgrowth. Wandering was greatest on patterns requiring frequent guidance (e.g., laminin stripes with periodic gaps). Surprisingly, the B oligomer of pertussis toxin, which lacks the subunit that inactivates G proteins, was equipotent at disrupting neurite guidance. Pertussis toxin probably acts by binding cell surface carbohydrates, since neurites lacking complex-type N-linked oligosaccharides were insensitive to the effects of the toxin. The B oligomer also blocked growth cone collapse induced by a brain membrane-derived factor; such factors are thought to act as repulsive guidance cues in vivo. That a single reagent can inhibit neuronal responses to both attractive and repulsive guidance cues suggests that such cues may share signaling pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways.

We exploited our observation that embryonic Xenopus spinal neurites align parallel to grooves in a quartz surface and that embryonic rat hippocampal neurites align perpendicular to shallow, narrow grooves (see companion paper: A. M. Rajnicek, S. Britland and C. D. McCaig, 1997) (J. Cell Sci. 110, 2905-2913) to investigate the mechanism of growth cone contact guidance. Substratum topography affe...

متن کامل

Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance.

Wnt proteins are conserved axon guidance cues that control growth cone navigation. However, the intracellular signaling mechanisms that mediate growth cone turning in response to Wnts are unknown. We previously showed that Wnt-Frizzled signaling directs spinal cord commissural axons to turn anteriorly after midline crossing through an attractive mechanism. Here we show that atypical protein kin...

متن کامل

Novel mechanism of voltage-gated N-type (Cav2.2) calcium channel inhibition revealed through α-conotoxin Vc1.1 activation of the GABA(B) receptor.

Neuronal voltage-gated N-type (Cav2.2) calcium channels are expressed throughout the nervous system and regulate neurotransmitter release and hence synaptic transmission. They are predominantly modulated via G protein-coupled receptor activated pathways, and the well characterized Gβγ subunits inhibit Cav2.2 currents. Analgesic α-conotoxin Vc1.1, a peptide from predatory marine cone snail venom...

متن کامل

GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth.

The neuronal growth-associated protein GAP-43 is expressed maximally during development and regeneration, and is enriched at the cytosolic surface of the growth cone membrane. GAP-43 can activate the GTP-binding protein G(o) which is also a major component of the growth cone membrane. These findings have led to the hypothesis that GAP-43 might modulate neurite outgrowth by altering G-protein ac...

متن کامل

Subcutaneous administration of a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis induces mucosal and systemic immune responses

Objective(s): After decades of containment, pertussis disease, caused by Bordetella pertussis seems to be re-emerging and still remains a major cause of reported vaccine-preventable deaths worldwide. The current licensed whole-cell vaccines display reactogenicity while acellular vaccines are expensive and do not induce Th1-type immune responses that are required for optimum protection against t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995